水库的蓄水量随时间而变化,现用
表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t的近似函数关系式为
=
。
(Ⅰ)该水库的蓄求量小于50的时期称为枯水期,以
,
表示第1月份(
=1,2,…,12),同一年内哪几个月份是枯水期?
(Ⅱ)求一年内该水库的最大蓄水量(取
=2.7计算)
求一条渐近线方程是,一个焦点是
的双曲线标准方程,并求此双曲线的离心率.
(本小题满分16分)设数列{an}的前n项和为Sn,对任意的正整数n,都有an=5Sn+1成立,
记bn= (n∈N*)
(1)求数列{an}与数列{bn}的通项公式;
(2)记cn=b2n-b2n−1 (n∈N*) ,设数列{cn}的前n项和为Tn,求证:对任意正整数n都有Tn<;
(3)设数列{bn}的前n项和为Rn,是否存在正整数k,使得Rk≥4k成立?若存在,找出一个正整数k;
若不存在,请说明理由;
(本小题满分16分)已知.
(1)求函数
在
上的最小值;
(2)对一切,
恒成立,求实数a的取值范围;
(3) 证明:对一切,都有
成立.
(本小题满分15分)已知矩形纸片ABCD中,AB=6cm,AD=12cm,将矩形
纸片的右下角折起,使得该角的顶点B落在矩形的边AD上,且折痕MN的
端点M, N分别位于边AB, BC上,设∠MNB=θ,sinθ=t,MN长度为l.
(1)试将l表示为t的函数l=f (t);
(2)求l的最小值.
(本小题满分15分)如图,已知椭圆:+=1(a>b>0)的长轴AB长为4,离心率e=,O为坐标原点,过B的直线l与x轴垂直.P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ,连结AQ延长交直线
于点M,N为
的中点.
(1)求椭圆的方程;
(2)证明:Q点在以为直径的圆
上;
(3)试判断直线QN与圆的位置关系.