(本小题满分12分)将一张2×6米的硬钢板按图纸的要求进行操作:沿线裁去阴影部分,把剩余的部分按要求焊接成一个有盖的长方体水箱(⑦为底,①②③④为侧面,⑤+⑥为水箱盖,其中①与③、②与④分别是全等的矩形,且⑤+⑥=⑦),设水箱的高为x米,容积为y立方米。
(1)写出y关于x的函数关系式;
(2)如何设计x的大小,使得水箱的容积最大?
)已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61.
(1)求a与b的夹角θ;
(2)求|a+b|和|a-b|;
已知直线的方程为3x+4y-12=0,求满足下列条件的直线
的方程.
(1) ,且直线
过点(-1,3);
(2) ,且
与两坐标轴围成的三角形面积为4.
已知函数=
,其中a≠0.
(1)若对一切x∈R,≥1恒成立,求a的取值集合.
(2)在函数的图像上取定两点
,
,记直线AB的斜率为K,问:是否存在x0∈(x1,x2),使
成立?若存在,求
的取值范围;若不存在,请说明理由.
已知函数满足
,其中a>0,a≠1.
(1)对于函数,当x∈(-1,1)时,f(1-m)+f(1-m2)<0,求实数m的取值集合;
(2)当x∈(-∞,2)时,的值为负数,求
的取值范围。
(1)已知函数y=ln(-x2+x-a)的定义域为(-2,3),求实数a的取值范围;
(2)已知函数y=ln(-x2+x-a)在(-2,3)上有意义,求实数a的取值范围.