如图,已知直三棱柱ABC—A1B1C1,,E是棱CC1上动点,F是AB中点,
(1)求证:;
(2)当E是棱CC1中点时,求证:CF//平面AEB1;
(3)在棱CC1上是否存在点E,使得二面角A—EB1—B的大小是45°,若存在,求CE的长,若不存在,请说明理由。
(本题满分13分)在展开式中,求:
(1)第6项;(2) 第3项的系数;(3)常数项。
在10件产品中,有8件合格品,2件次品.从这10件产品中任意抽出3件. 求(Ⅰ)抽出的3件产品中恰好有1件是次品的概率;
(Ⅱ)抽出的3件产品中至少有1件是次品的概率.
证明:。
在直三棱柱中,
,直线
与平面
成
角;
(1)求证:平面平面
;
(2)求二面角的正弦值.
在上海世界博览会开展期间,计划选派部分高二学生参加宣传活动,报名参加的学生需进行测试,共设4道选择题,规定必须答完所有题,且答对一题得1分,答错一题扣1分,至少得2分才能入选成为宣传员;甲乙丙三名同学报名参加测试,他们答对每个题的概率都为,且每个人答题相互不受影响.
(1)求学生甲能通过测试成为宣传员的概率;
(2)求至少有两名学生成为宣传员的概率.