过轴上的动点,引抛物线两条切线,为切点。(Ⅰ)求证:直线过定点,并求出定点坐标;(Ⅱ)若,设弦的中点为,试求的最小值(为坐标原点).
设函数,集合. (1)若,求解析式。 (2)若,且在时的最小值为,求实数的值。
设函数 (1)判断的奇偶性 (2)用定义法证明在上单调递增
有下列两个命题: 命题:对,恒成立。 命题:函数在上单调递增。 若“”为真命题,“”也为真命题,求实数的取值范围。
已知集合,集合 (1)当时,求 (2)若,求实数的取值范围
设函数 (1)当时,求的值域 (2)解关于的不等式:
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号