已知函数,函数
:
(1)当时,求函数
的表达式;
(2)若,函数
在
上的最小值是2 ,求
的值;
(3)在(2)的条件下,求直线与函数
的图象所围成图形的面积.
(12分)某市中学生田径运动会总分获得冠、亚、季军的代表队人数如下表,大会组委会为使颁奖仪式有序进行,用分层抽样的方法从三个代表队中抽取16人在前排就座,其中亚军队有5人.(1)求季军队中男运动员的人数(2)从前排就座的亚军队5人(3男2女)中随机抽取2人上台领奖请列出所有的基本事件,并求亚军队中有女生上台领奖的概率;
性别名次 |
冠军 |
亚军 |
季军 |
男生 |
30 |
30 |
![]() |
女生 |
30 |
20 |
30 |
(12分)抛物线的顶点在坐标原点,焦点在轴的负半轴上,过点
作直线
与抛物线交于A,B两点,且满足
,
(1)求抛物线的方程
(2)当抛物线上的一动点P从A运动到B时,求面积的的最大值.
(12分)在四棱锥中,底面ABCD是边长为1的正方形,
平面ABCD,PA=AB,M,N分别为PB,AC的中点,
(1)求证:MN //平面PAD(2)求点B到平面AMN的距离
(12分)已知数列是公差不为零的等差数列,
且
成等比数列
(1)求数列的通项公式(2)求数列
的前
项和
(10分)已知函数
(1)求的最小正周期和值域(2)求
的单调递增区间