如图所示,可视为质点的物块A、B、C放在倾角为37O、长L=2m的固定斜面上,物块与斜面间的动摩擦因数μ=0.5,A与B紧靠在一起,C紧靠在固定挡板上,物块的质量分别为mA=0.80kg、mB=0. 40kg,其中A不带电,B、C的带电量分别为qB=+4.0×10-5C、qC=+2.0×10-5C,且保持不变。开始时三个物块均能保持静止且与斜面间均无摩擦力作用。如果选定两点电荷在相距无穷远处的电势能为0,则相距为r时,两点电荷具有的电势能可表示为。现给A施加一平行于斜面向上的力F,使A在斜面上作加速度大小为a=2.5m/s2的匀加速直线运动,经过时间t0物体A、B分离并且力F变为恒力。当A运动到斜面顶端时撤去力F。
已知静电力常量k=9.0×109N·m2/C2,g=10m/s2,sin37O =0.6,cos37O =0.8。求:
(1)未施加力F时物块B、C间的距离;
(2)t0时间内库仑力做的功;
(3)力F对A物块做的总功。
如图所示,坐标系中第一象限有垂直纸面向外的匀强磁场,磁感应强度B=102T,同时有竖直向上与y轴同方向的匀强电场,场强大小E1=102V/m,第四象限有竖直向上与y轴同方向的匀强电场,场强大小E2=2E1=2×102V/m。若有一个带正电的微粒,质量m=10-12kg,电量q=10-13C,以水平与x轴同方向的初速度从坐标轴的P1点射入第四象限,OP1=0.2m,然后从x轴上的P2点穿入第一象限,OP2=0.4m,接着继续运动。取g=10m/s2。求:
(1)微粒射入的初速度;
(2)微粒第三次过x轴的位置;
(3)从P1开始到第三次过x轴的总时间。
如图所示,某货物仓库,需将生产成品用传送带从底端传递到高度为H的高处存放,货物从静止开始轻放到传送带的最下端,已知货物与传送带间的动摩擦因数为μ=,传送带始终保持恒定速度运动。若想用最短时间将货物匀加速的运送至顶端,则传送带与水平面夹角θ应设计为多大?最短时间为多少?(传送带长度可随设计需要而变化,g=10m/s2)
一个电表10min转了150转求做的电功,用最简洁,方便简单的解法求解
A、B两车沿一方向同时经过平直公路上一点,A初速度是20m/s,加速度5m/s2匀减速运动,B以8m/s的速度匀速运动,求多长时间B追上A?
三根固定的光滑细杆,上套一个小滑环,从a外静止释放,判断到b.c.d的时间关系
(最高点为a,然后依次为bcd)