(本小题满分7分)选修4—4:坐标系与参数方程
在直角坐标系中,直线
的方程为
,曲线
的参数方程为
.
(1)已知在极坐标系(与直角坐标系取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,点
的极坐标为
,判断点
与直线
的位置关系;
(2)设点是曲线
上的一个动点,求它到直线
的距离的最小值.
(本小题满分7分)选修4-2:矩阵与变换
已知矩阵.
(1)求的逆矩阵
;
(2)求矩阵的特征值
、
和对应的一个特征向量
、
.
(本小题满分14分)已知函数的导函数是
,
在
处取得极值,且
,
(1)求的极大值和极小值;
(2)记在闭区间
上的最大值为
,若对任意的
总有
成立,求
的取值范围;
(Ⅲ)设是曲线
上的任意一点.当
时,求直线OM斜率的最小值,据此判断
与
的大小关系,并说明理由.
(本小题满分13分)某市某棚户区改造建筑用地平面示意图如图所示.经规划调研确定,棚改规划建筑用地区域近似地为半径是R的圆面.该圆面的内接四边形是原棚户建筑用地,测量可知边界
万米,
万米,
万米.
(1)请计算原棚户区建筑用地的面积及圆面的半径
的值;
(2)因地理条件的限制,边界、
不能变更,而边界
、
可以调整,为了提高棚户区改造建筑用地的利用率,请在圆弧
上设计一点
;使得棚户区改造的新建筑用地
的面积最大,并求最大值.
(本小题满分13分)若向量其中
,记函数
,若函数
的图像与直线
(
为常数)相切,并且切点的横坐标依次成公差为
的等差数列.
(1)求的表达式及
的值;
(2)将函数的图像向左平移
,得到
的图像,当
时,
与
图象的交点横坐标成等比数列,求钝角
的值.