相传古代的印度国王要奖赏国际象棋的发明者,问他需要什么.发明者说:陛下,在国际象棋的第一个格子里面放1粒麦子,在第二个格子里面放2粒麦子,第三个格子放4粒麦子,以后每个格子中的麦粒数都是它前一个格子中麦粒数的二倍,依此类推(国际象棋棋盘共有64个格子).请将这些麦子赏给我,我将感激不尽.国王想这还不容易,就让人扛了一袋小麦,但不到一会儿就没了,最后一算结果,全印度一年生产的粮食也不够.国王很奇怪,小小的“棋盘”,不足100个格子,如此计算怎么能放这么多麦子?试用程序框图表示一下算法过程.
已知a>0,函数f(x)=-2asin(2x+)+2a+b,当x∈[0,
]时,-5≤f(x)≤1.
(1)求常数a,b的值.
(2)设g(x)=f(x+)且lg g(x)>0,求g(x)的单调区间.
已知sinθ,cosθ是关于x的方程x2-ax+a=0(a∈R)的两个根.
(1)求cos3(-θ)+sin3(
-θ)的值.
(2)求tan(π-θ)-的值.
已知角α的终边过点(a,2a)(a≠0),求α的三角函数值.
已知角α终边经过点P(x,-)(x≠0),且cosα=
x.求sinα+
的值.
定义F(x,y)=(1+x)y,x,y∈(0,+∞).令函数f(x)=F(1,log2(x2-4x+9))的图象为曲线C1,曲线C1与y轴交于点A(0,m),过坐标原点O向曲线C1作切线,切点为B(n,t)(n>0),设曲线C1在点A,B之间的曲线段与线段OA,OB所围成图形的面积为S,求S的值.