相传古代的印度国王要奖赏国际象棋的发明者,问他需要什么.发明者说:陛下,在国际象棋的第一个格子里面放1粒麦子,在第二个格子里面放2粒麦子,第三个格子放4粒麦子,以后每个格子中的麦粒数都是它前一个格子中麦粒数的二倍,依此类推(国际象棋棋盘共有64个格子).请将这些麦子赏给我,我将感激不尽.国王想这还不容易,就让人扛了一袋小麦,但不到一会儿就没了,最后一算结果,全印度一年生产的粮食也不够.国王很奇怪,小小的“棋盘”,不足100个格子,如此计算怎么能放这么多麦子?试用程序框图表示一下算法过程.
(本小题满分14分)
已知,函数
的图像连续不断)
(Ⅰ)求的单调区间;
(Ⅱ)当时,证明:存在
,使
;
(Ⅲ)若存在,且
,使
证明
.
(本小题满分12分)
提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度
(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当
时,车流速度
是车流密度
的一次函数.
(Ⅰ)当时,求函数
的表达式
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)
可以达到最大,并求出最大值.(精确到1辆/小时)
(本小题满分12分)
已知函数的最大值为2
是集合
中的任意两个元素,
的最小值为
.
(Ⅰ)求的值
(Ⅱ)若,求
的值
(本小题满分12分)(考生注意:本题请从以下甲乙两题中任选一题作答,若两题都答只以甲题计分)
甲:设数列的前
项和为
,且
;数列
为等差数列,且
(Ⅰ)求数列 的通项公式
(Ⅱ)若,
为数列
的前
项和,求
乙:定义在[-1,1]上的奇函数,已知当
时,
(Ⅰ)求在[0,1]上的最大值
(Ⅱ)若是[0,1]上的增函数,求实数
的取值范围
(本小题满分12分)所对的边分别为
,且
.
(Ⅰ)求角A;
(Ⅱ)已知求
的值.