游客
题文

相传古代的印度国王要奖赏国际象棋的发明者,问他需要什么.发明者说:陛下,在国际象棋的第一个格子里面放1粒麦子,在第二个格子里面放2粒麦子,第三个格子放4粒麦子,以后每个格子中的麦粒数都是它前一个格子中麦粒数的二倍,依此类推(国际象棋棋盘共有64个格子).请将这些麦子赏给我,我将感激不尽.国王想这还不容易,就让人扛了一袋小麦,但不到一会儿就没了,最后一算结果,全印度一年生产的粮食也不够.国王很奇怪,小小的“棋盘”,不足100个格子,如此计算怎么能放这么多麦子?试用程序框图表示一下算法过程.

科目 数学   题型 解答题   难度 容易
知识点: 框图及其结构
登录免费查看答案和解析
相关试题

(本小题满分14分)
已知,函数的图像连续不断)
(Ⅰ)求的单调区间;
(Ⅱ)当时,证明:存在,使
(Ⅲ)若存在,且,使证明.

(本小题满分12分)
提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当时,车流速度是车流密度的一次函数.
(Ⅰ)当时,求函数的表达式
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)

(本小题满分12分)
已知函数的最大值为2
是集合中的任意两个元素,的最小值为.
(Ⅰ)求的值
(Ⅱ)若,求的值

(本小题满分12分)(考生注意:本题请从以下甲乙两题中任选一题作答,若两题都答只以甲题计分)
甲:设数列的前项和为,且;数列为等差数列,且
(Ⅰ)求数列 的通项公式
(Ⅱ)若为数列的前项和,求
乙:定义在[-1,1]上的奇函数,已知当时,
(Ⅰ)求在[0,1]上的最大值
(Ⅱ)若是[0,1]上的增函数,求实数的取值范围

(本小题满分12分)所对的边分别为,且.
(Ⅰ)求角A;
(Ⅱ)已知的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号