某校高二年级的一次数学考试中,为了分析学生的得分情况,随机抽取名同学的成绩,数据的分组统计表如下:
分组 |
频数 |
频率 |
频率/组距 |
(40,50] |
2 |
0.02 |
0.002 |
(50,60] |
4 |
0.04 |
0.004 |
(60,70] |
11 |
0.11 |
0.011 |
(70,80] |
38 |
0.38 |
0.038 |
(80,90] |
![]() |
![]() |
![]() |
(90,100] |
11 |
0.11 |
0.011 |
合计 |
![]() |
![]() |
![]() |
(1)求出表中的值;
(2)为了了解某些同学在数学学习中存在的问题,现从样本中分数在中的6位同学中任意抽取2人进行调查,求分数在
和
中各有一人的概率.
(本小题满分12分)如图,在斜三棱柱中,侧面
与侧面
都是菱形,
,
.
(Ⅰ)求证:;
(Ⅱ)若,求四棱锥
的体积.
【原创】在中,内角
的对边分别为
.已知
=
.
(1)求的值;
(2) 若,
的周长为14,求
的长.
(本小题满分13分)已知椭圆(
)的长轴长为
,且过点
.
(1)求椭圆的方程;
(2)设、
、
是椭圆上的三点,若
,点
为线段
的中点,
、
两点的坐标分别为
、
,求证:
.
(本大题满分13分)对于给定数列,如果存在实常数
使得
对于任意
都成立,我们称数列
是 “线性数列”.
(1)若,
,
,数列
、
是否为“线性数列”?若是,指出它对应的实常数
,若不是,请说明理由;
(2)证明:若数列是“线性数列”,则数列
也是“线性数列”;
(3)若数列满足
,
,
为常数.求数列
前
项的和.