(本小题满分12分)将一个各个面上均涂有颜色的正方体锯成27个同样大小的小正方体.(Ⅰ)从这些小正方体中任取1个,求其中至少有两面涂有颜色的概率;(Ⅱ)从中任取2个小正方体,记2个小正方体涂上颜色的面数之和为.求的分布列和数学期望.
设,其中,且.求的最大值和最小值.
已知、分别是的外接圆和内切圆;证明:过上的任意一点,都可作一个三角形,使得、分别是的外接圆和内切圆.
设的所有排列的集合为;,记,;求.(其中表示集合的元素个数).
在一个圆周上给定十二个红点;求的最小值,使得存在以红点为顶点的个三角形,满足:以红点为端点的每条弦,都是其中某个三角形的一条边.
设,; 求证:.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号