游客
题文

(本小题满分14分)某工厂三个车间共有工人1000名,各车间男、女工人数如下表:

 
第一车间
第二车间
第三车间
女工
173
100

男工
177


已知在全厂工人中随机抽取1名,抽到第二车间男工的概率是0.15.
(1)求的值;
(2)现用分层抽样的方法在全厂抽取50名工人,问应在第三车间抽取多少名?
(3)已知,求第三车间中女工比男工少的概率.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知函数f(x)=, 其中为常数,若当x∈(-∞, 1]时, f(x)有意义,求实数a的取值范围.

在数列{an}中,a1=15,以后各项由 an+1=an,求数列{an}的前n项和的最大值.

已知,t∈[,8],对于f(t)值域内的所有实数m,不等式恒成立,求x的取值范围。

已知函数f(x)=(a>0,x>0).
(1)求证:f(x)在(0,+∞)上是增函数;
(2)若f(x)≤2x在(0,+∞)上恒成立,求a的取值范围;
(3)若f(x)在[m,n]上的值域是[m,n](m≠n),求a的取值范围.

已知函数f(x)=6x–6x2,设函数g1(x)=f(x), g2(x)=f[g1(x)], g3(x)="f" [g2(x)],…gn(x)=f[gn–1(x)],…
(1)求证:如果存在一个实数x0,满足g1(x0)=x0,那么对一切n∈N,gn(x0)=x0都成立;
(2)若实数x0满足gn(x0)=x0,则称x0为稳定不动点,试求出所有这些稳定不动点;
(3)设区间A=(–∞,0),对于任意x∈A,有g1(x)=f(x)=a<0, g2(x)=f[g1(x)]=f(0)<0,且n≥2时,gn(x)<0.试问是否存在区间B(A∩B≠),对于区间内任意实数x,只要n≥2,都有gn(x)<0.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号