(本小题满分14分)
已知:有穷数列{an}共有2k项(整数k≥2 ),a1="2" ,设该数列的前n项和为 Sn且满足Sn+1=aSn+2(n=1,2,…,2k-1),a>1.
(1)求{an}的通项公式;
(2)设bn=log2an,求{bn}的前n项和Tn;
(3)设cn=,若a=2
,求满足不等式
+
+…+
+
≥
时k的最小值.
如图,矩形所在平面与三角形
所在平面相交于
平面
(1)求证:平面
(2)若点在线段
上,
为线段
中点,求证:
平面
在△,角
的对边分别为
已知
(1)求的值;
(2)若求△
的面积.
已知A(-2,0),B(2,0),动点P与A、B两点连线的斜率分别为和
,
且满足·
="t" (t≠0且t≠-1).
(1)求动点P的轨迹C的方程;
(2)当t<0时,曲线C的两焦点为F1,F2,若曲线C上存在点Q使得∠F1QF2=120O,
求t的取值范围.
已知函数
(Ⅰ)求的单调区间;
(Ⅱ)若在[0,1]上单调递增,求a的取值范围。
已知函数的图象经过坐标原点,且
,
数列的前n项和
(1)求数列的通项公式;
(2)若数列满足
求数列
的前
项和.