甲、乙两位同学做摸球游戏,游戏规则规定:两人轮流从一个放有2个红球,3个黄球,1个白球且颜色不同的6个小球的暗箱中取球,每次每人只能取一球,每取出1个后立即放回,另一个接着再取出后也立即放回,谁先取到红球,谁为胜者.现甲先取,求甲摸求次数不超过3次就获胜的概率.
已知.
(1)当时,解不等式
;(2)若
,解关于x的不等式
.
已知数列的前
项和为
,对任意
,点
都在函数
的图像上.
(1)求数列的通项公式;
(2)设,且数列
是等差数列,求非零常数
的值;
解关于的不等式:
.
已知函数
(1)若在定义域内的单调性;
(2)若的值;
(3)若上恒成立,求a的取值范围.
(本题满分12分)
某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为当年产量不足80千件时,
(万元);当年产量不
小于80千件时,
(万元).通过市场分析,若每件售价为500元时,该厂当年生产该产品能全部销售完.
(1)写出年利润(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一产品的生产中所获利润最大,最大利润是多少?