(本小题满分12分)用黄、蓝、白三种颜色粉刷间办公室(Ⅰ) 若每间办公室刷什么颜色不要求,有多少种不同的粉刷方法?(Ⅱ)若一种颜色粉刷间,一种颜色粉刷间,一种颜色粉刷间,有多少种不同的粉刷方法?(Ⅲ)若每种颜色至少用一次,粉刷这间办公室,有多少种不同的粉刷方法?解:
(1)求的最大值,并求取最大值时相应的的值. (2)若,求的最小值.
在递增等差数列()中,已知,是和的等比中项. (1)求数列的通项公式; (2)设数列的前项和为,求使时的最小值.
在△中,分别为内角的对边,且△的面积为15,求边的长.
已知函数,设函数 (Ⅰ)求证:是奇函数; (Ⅱ)(1) 求证:; (1) 结合(1)的结论求的值; (Ⅲ)仿上,设是上的奇函数,请你写出一个函数的解析式,并根据第(Ⅱ)问的结论,猜想函数满足的一般性结论.
已知是互不相等的非零实数,求证:由确定的三条抛物线至少有一条与轴有两个不同的交点.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号