(本小题满分12分)
已知直线为曲线
在点
处的切线,
为该曲线的另一条切线,
且 .
(Ⅰ)求直线
的方程;
(Ⅱ)求由直线,
和
轴所围成的三角形的面积
在直角坐标系中,直线
的方程为
,曲线
的参数方程为
.
(1)已知在极坐标系(与直角坐标系取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,点
的极坐标为
,判断点
与直线
的位置关系;
(2)设点是曲线
上的一个动点,求它到直线
的距离的最小值.
已知矩阵.
(1) 求的逆矩阵
;
(2)求矩阵的特征值
、
和对应的特征向量
、
.
巳知函数,
,其中
.
(1)若是函数
的极值点,求
的值;
(2)若在区间
上单调递增,求
的取值范围;
(3)记,求证:
.
已知抛物线C:y2=2px(p>0)的焦点F和椭圆的右焦点重合,直线
过点F交抛物线于A、B两点.
(1)求抛物线C的方程;
(2)若直线交y轴于点M,且
,m、n是实数,对于直线
,m+n是否为定值?
若是,求出m+n的值;否则,说明理由.
在四棱锥P-ABCD中,侧面PCD底面ABCD,PD
CD,底面ABCD是直角梯形,AB∥DC,
,
,
.
(1)求证:BC平面PBD:
(2)求直线AP与平面PDB所成角的正弦值;
(3)设E为侧棱PC上异于端点的一点,,试确定
的值,使得二面角E-BD-P的余弦值为
.