为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和A,B间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M,N间的距离的步骤。
21.(本小题满分13分)
设是函数
的两个极值点,且
.
(1)求证:;
(2)求的取值范围;
(3)若函数,当
且
时,求证:
.
20.(本小题满分13分)
已知数列{an}有a1 = a,a2 = p(常数p > 0),对任意的正整数n,,且
.
(1)求a的值;
(2)试确定数列{an}是否是等差数列,若是,求出其通项公式;若不是,说明理由;
(3)对于数列{bn},假如存在一个常数b,使得对任意的正整数n都有bn< b,且,则称b为数列{bn}的“上渐近值”,令
,求数列
的“上渐近值”.
(本小题满分14分)一束光线通过点M(-3,3)射到x轴上,然后反射到圆C上,其中圆C满足以下条件:过点A(1,2)和点B(2,3)且圆心在直线
上。
(1)求圆C的方程;
(2)求通过圆C圆心的反射光线所在直线的方程;
(3)若反射光线所在直线与圆C相切,求入射光线所在直线的方程
(本小题满分12分)求与x轴相切,圆心在直线上,且被直线
截得的弦长为
的圆的方程。
(本小题满分12分)在直四棱住中(侧棱与底面垂直的四棱柱),
,底面是边长为
的正方形,
、
、
分别是棱
、
、
的中点
(1)求证:平面平面
;
(2)求证:面
。