(本小题满分13分)
在平面直角坐标系中,已知点,点
在直线
上运动,过点
与
垂直的直线和
的中垂线相交于点
.
(Ⅰ)求动点的轨迹
的方程;
(Ⅱ)设点是轨迹
上的动点,点
,
在
轴上,圆
(
为参数)内切于
,求
的面积的最小值.
设是等差数列,是各项都为正整数的等比数列,且,,
,
.
(Ⅰ)求,的通项公式;
(Ⅱ)若数列满足
(
),且
,试求
的通项公式及其前
项和
.
如图,在正四棱台中,
,
,
,
、
分别是
、
的中点.
(Ⅰ)求证:平面∥平面
;
(Ⅱ)求二面角的余弦值的大小.
注:底面为正方形,从顶点向底面作垂线,垂足是底面中心,这样的四棱锥叫做正四棱锥.用一个平行于正四棱锥底面的平面去截该棱锥,底面与截面之间的部分叫做正四棱台.
为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过公里的地铁票价如下表:
乘坐里程![]() ![]() |
![]() |
![]() |
![]() |
票价(单位:元) |
![]() |
![]() |
![]() |
现有甲、乙两位乘客,他们乘坐的里程都不超过公里.已知甲、乙乘车不超过
公里的概率分别为
,
,甲、乙乘车超过
公里且不超过
公里的概率分别为
,
.
(Ⅰ)求甲、乙两人所付乘车费用不相同的概率;
(Ⅱ)设甲、乙两人所付乘车费用之和为随机变量,求
的分布列与数学期望.
已知向量,
,实数
为大于零的常数,函数
,
,且函数
的最大值为
.
(Ⅰ)求的值;
(Ⅱ)在中,
分别为内角
所对的边,若
,
,且
,求
的最小值.
(本小题满分10分)
已知集合A是集合Pn={1,2,3, ,n} (n≥3,n∈N*)的子集,且A中恰有3个元素,同时这3个元素的和是3的倍数.记符合上述条件的集合A的个数为f(n).
(1)求f(3),f(4);
(2)求f(n)(用含n的式子表示).