(本小题共13分)
设是正数组成的数列,其前
项和为
,且对于所有的正整数
,有
.
(I) 求,
的值;
(II) 求数列的通项公式;
(III)令,
,
(
),求数列
的前
项和
.
(、(本题12分)
如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,BC∥AD,AB⊥AD,AD=2AB=2BC="2," O为AD中点.
(1)求证:PO⊥平面ABCD;
(2)求直线PB与平面PAD所成角的正弦值;
(3)线段AD上是否存在点Q,使得三棱锥的体积为
?若存在,求出
的值;若不存在,请说明理由。
(本题12分)
如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,∠PDA=45°,点E、F分别为棱AB、PD的中点.
(1)求证:平面PCD;(2)求证:平面PCE⊥平面PCD.
(本题12分)如图,在直三棱柱(侧棱与底面垂直的三棱柱)中,
,
,
,
是
边的中点.
(Ⅰ)求证:;
(Ⅱ)求证:∥面
.
(本题12分)已知函数(1)求
的定义域;(2)求
的值域。
本题12分)已知的顶点
,
求:(1)
边上的中线所在的直线方程(2)
边上的高
所在的直线方程.