如图所示,A、B两个小物体(可看成质点)的质量分别为2m、m,它们栓接在跨过定滑轮的细绳两端,细绳不可伸长,且能承受足够大的拉力。B物体悬吊着静止时,A也静止在地面上,A、B与定滑轮轮轴之间的竖直距离分别为2l、l。现将B物体竖直向上提高距离l,再将其从静止释放。每次细绳被拉直时A、B速度的大小立即变成相等,且速度方向相反,由于细绳被拉直的时间极短,此过程中重力的作用可以忽略不计。物体与地面接触时,速度立即变为0,直到再次被细绳拉起。细绳始终在滑轮上,且不计一切摩擦。重力加速度为g。求
(1)细绳第一次被拉直瞬间绳对A冲量的大小;
(2)A第一次上升过程距离地面的最大高度;
(3)A运动的总路程。
如图所示,在光滑的水平地面上,静止着质量为M =2.0kg的小车A,小车的上表面距离地面的高度为0.8m,小车A的左端叠放着一个质量为m=1.0kg的小物块B(可视为质点)处于静止状态,小物块与小车上表面之间的动摩擦因数μ=0.20。在小车A的左端正上方,用长为R=1.6m的不可伸长的轻绳将质量为m =1.0kg的小球C悬于固定点O点。现将小球C拉至使轻绳拉直且与竖起方向成θ=60°角的位置由静止释放,到达O点的正下方时,小球C与B发生弹性正碰(碰撞中无机械能损失),小物块从小车右端离开时车的速度为1m/s,空气阻力不计,取g=10m/s2. 求:
 (1)小车上表面的长度L是多少?
 (2)小物块落地时距小车右端的水平距离是多少?
如图所示,半径为R的 1/4光滑圆弧轨道最低点D与水平面相切,在D点右侧L0=4R处用长为R的细绳将质量为m的小球B(可视为质点)悬挂于O点,小球B的下端恰好与水平面接触,质量为m的小球A(可视为质点)自圆弧轨道C的正上方H高处由静止释放,恰好从圆弧轨道的C点切入圆弧轨道,已知小球A与水平面间的动摩擦因数μ=0.5,细绳的最大张力Fm=7mg,重力加速度为g,试求:
 (1)若H=R,小球A到达圆弧轨道最低点D时所受轨道的支持力;
 (2)试讨论H在什么范围内,小球A与B发生弹性碰撞后细绳始终处于拉直状态。
如图为火车站装载货物的原理示意图,设AB段是距水平传送带装置高为H=5m的光滑斜面,水平段BC使用水平传送带装置,BC长L=8m,与货物包的摩擦系数为μ=0.6,皮带轮的半径为R=0.2m,上部距车厢底水平面的高度h=0.45m。设货物由静止开始从A点下滑,经过B点的拐角处无能量损失。通过调整皮带轮(不打滑)的转动角速度ω可使货物经C点抛出后落在车厢上的不同位置,取g=10m/s2,求:
 (1)当皮带轮静止时,货物包在车厢内的落地点到C点的水平距离;
 (2)当皮带轮以角速度ω="20" rad/s顺时方针方向匀速转动时,包在车厢内的落地点到C点的水平距离;
 (3)讨论货物包在车厢内的落地点到C点的水平距离S与皮带轮沿顺时方针方向转动的角速度ω间的关系。
如图所示,竖直放置的两平行带电金属板间的匀强电场中有一根质量为m的均匀绝缘杆,上端可绕轴O在竖直平面内转动,下端固定一个不计重力的点电荷A,带电量+q。当板间电压为U1时,杆静止在与竖直方向成 =45°的位置;若平行板以M、N为轴同时顺时针旋转
=45°的位置;若平行板以M、N为轴同时顺时针旋转 =15°的角,而仍要杆静止在原位置上,则板间电压应变为U2。求:U1/U2的比值。
=15°的角,而仍要杆静止在原位置上,则板间电压应变为U2。求:U1/U2的比值。
 某同学是这样分析求解的:
 两种情况中,都有力矩平衡的关系。设杆长为L,两板间距为d,当平行板旋转后,电场力就由 变为
变为 ,电场力对轴O的力臂也发生相应的改变,但电场力对轴O的力矩没有改变。只要列出两种情况下的力矩平衡方程,就可求解了。
,电场力对轴O的力臂也发生相应的改变,但电场力对轴O的力矩没有改变。只要列出两种情况下的力矩平衡方程,就可求解了。
 你觉得他的分析是否正确?如果认为是正确的,请继续解答;如果认为有错误之处,请说明理由并进行解答。
如图所示,光滑水平面AB与不光滑竖直面的半圆形导轨在B点衔接,导轨半径R,一个质量为m的静止物块在A处压缩弹簧,把物块释放,在弹力的作用下获得一个向右的速度,当它经过B点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半圆周运动到达C点,求:
  (1)弹簧对物块的弹力做的功;
  (2)物块从B至C克服阻力所做的功;
  (3)物块离开C点后落回水平面时动能的大小.