已知动点(x, y) 在曲线C上,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程;定点M(2,1),平行于OM的直线
在y轴上的截距为m(m≠0),直线
与曲线C交于A、B两个不同点.
(1)求曲线的方程; (2)求m的取值范围.
如图,四棱锥P-ABCD的底面是矩形,侧面PAD
是正三角形,且侧面PAD⊥底面ABCD,E为侧棱PD的中点.
(I)试判断直线PB与平面EAC的关系
(文科不必证明,理科必须证明);
(II)求证:AE⊥平面PCD;
(III)若AD=AB,试求二面角A-PC-D
的正切值.
已知函数.
(I)将写成
的形式,并求其图象对称中心的横坐标;
(II)如果△ABC的三边a、b、c满足b2= a c,且边b所对的角为,试求
的范围及此时函数
的值域.
(I)已知函数在
上是增函数,求
得取值范围;
(II)在(I)的结论下,设,
,求函数
的最小值.
已知等差数列的公差
,对任意
,都有
.
(I)求证:对任意,所有方程
均有一个相同的实数根;
(II)若,方程
的另一不同根为
,
,求数列
的前n项和
.
在平面直角坐标系中,O为坐标原点,已知点,
,
若点C满足,点C的轨迹与抛物线
交于A、B两点.
(I)求证:;
(II)在轴正半轴上是否存在一定点
,使得过点P的任意一条抛物线的弦的长度是原点到该弦中点距离的2倍,若存在,求出m的值;若不存在,请说明理由.