(本小题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD是矩形,已知AB = 3,AD = 2,PA = 2,,
.
(1) 证明:AD⊥平面PAB;
(2) 求异面直线PC与AD所成的角的大小;
(3) 求二面角P—BD—A的大小.
已知,数列
是首项为
,公比也为
的等比数列,令
(Ⅰ)求数列的前
项和
;
(Ⅱ)当数列中的每一项总小于它后面的项时,求
的取值范围.
已知向量,
,
(Ⅰ)若,求
的值;
(Ⅱ)在中,角
的对边分别是
,且满足
,求函数
的取值范围.
关于的不等式
.
(Ⅰ)当时,解此不等式;
(Ⅱ)设函数,当
为何值时,
恒成立?
在平面直角坐标系xoy中,曲线C1的参数方程为(
,
为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上,且经过极点的圆.已知曲线C1上的点M(1,
)对应的参数j=
,曲线C2过点D(1,
).
(I)求曲线C1,C2的直角坐标方程;
(II)若点A(r1,q),B(r2,q+)在曲线C1上,求
的值.
如图,AB是⊙O的直径 ,AC是弦 ,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E.,OE交AD于点F.
(I)求证:DE是⊙O的切线;
(II)若=
,求
的值.