(本小题满分12分)
古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有n()个圆盘依其半径大小,大的在下,小的在上套在A柱上,现要将套在A柱上的盘换到C柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子A、B、C可供使用.
现用an表示将n个圆盘全部从A柱上移到C柱上所至少需要移动的次数,回答下列问题:
(1) 写出a1,a2,a3,并求出an;
(2) 记,求和
(
);
(其中表示所有的积
的和)
(3) 证明:.
如图,已知
的两条角平分线
和
相交于
,
,
在
上,且
.
(Ⅰ)证明:
、
、
、
四点共圆;
(Ⅱ)证明:
平分
.
在极坐标系下,已知圆O:和直线
,
(1)求圆O和直线的直角坐标方程;
(2)当时,求直线
与圆O公共点的一个极坐标.
对于任意实数和
,不等式
恒成立,试求实数
的取值范围.
已知函数
(1)若函数在定义域内单调递增,求
的取值范围;
(2)若且关于x的方程
在
上恰有两个不相等的实数根,求实数
的取值范围;
(3)设各项为正的数列满足:
求证:
如图,⊙的直径
的延长线与弦
的延长线相交于点
,
为⊙
上一点,AE=AC ,
交
于点
,且
,
(1)求的长度.
(2)若圆F且与圆内切,直线PT与圆F切于点T,求线段PT的长度