如图,四棱锥P—ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点。
(1)求证:BE//平面PAD;
(2)若BE⊥平面PCD,①求异面直线PD与BC所成角的余弦值;
②求二面角E—BD—C的余弦值。
将一枚骰子(形状为正方体,六个面上分别标有数字1,2,3,4,5,6的玩具)先后抛掷两次,骰子向上的点数依次为.
(1)求的概率;
(2)求的概率P;
(3)试将右侧求⑵中概率P的伪代码补充完整
已知抛物线的顶点在坐标原点,它的准线经过双曲线
:
的一个焦点
且垂直于
的两个焦点所在的轴,若抛物线
与双曲线
的一个交点是
.
(1)求抛物线的方程及其焦点
的坐标;
(2)求双曲线的方程及其离心率
.
设p:实数x满足,其中
,命题
实数
满足
.
(Ⅰ)若且
为真,求实数
的取值范围;
(Ⅱ)若是
的充分不必要条件,求实数
的取值范围.
设是一个公差为
的等差数列,它的前
10项和,且
成等比数列。
(1)证明:
(2)求公差的值和数列
的通项公式。
(1)求数列前n项之和。
(2)求数列前n项之和