如图,四棱锥P—ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点。
(1)求证:BE//平面PAD;
(2)若BE⊥平面PCD,①求异面直线PD与BC所成角的余弦值;
②求二面角E—BD—C的余弦值。
(本小题满分12分)养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用).已建仓库的底面直径为12m,高4m.养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4m(高不变);二是高度增加4m(底面直径不变).
(1)分别计算按这两种方案所建的仓库的体积;
(2)分别计算按这两种方案所建的仓库的表面积(底面面积不计);
(3)哪个方案更经济些?
(本小题满分12分)如图,在直三棱柱中,
、
分别是
、
的中点,点
在
上,
。
求证:(1)EF∥平面ABC;
(2)平面平面
.
(本小题满分10分)已知直线的斜率为
,且和坐标轴围成面积为3的三角形,求直线
的方程。
如图,已知C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB的平分线分别交AE、AB于点F、D.
(Ⅰ)求∠ADF的度数;
(Ⅱ)若AB=AC,求的值.
已知,设命题
函数
在R上单调递减,
不等式
的解集为R,若
和
中有且只有一个命题为真命题,求
的取值范围.