(本小题满分16分)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是等腰梯形,其中高0.5米,AB=1米, CD=2a(a>)米.上部CmD是个半圆,固定点E为CD的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和CD平行的伸缩横杆.
(1)设MN与AB之间的距离为x米,试将三角通风窗EMN的通风面积S(平方米)表示成关于x的函数;
(2)当MN与AB之间的距离为多少米时,三角通风窗EMN的通风面积最大?并求出这个最大面积.
(本小题满分12分)已知函数,
.
(Ⅰ)若函数在定义域上是增函数,求a的取值范围;
(Ⅱ)求的最大值.
(本小题满分12分)已知圆,点
,以线段AB为直径的圆内切于圆
,记点B的轨迹为
.
(Ⅰ)求曲线的方程;
(Ⅱ)直线AB交圆于C,D两点,当B为CD中点时,求直线AB的方程.
(本小题满分12分)如图,在斜三棱柱中,侧面
与侧面
都是菱形,
,
.
(Ⅰ)求证:;
(Ⅱ)若,求四棱锥
的体积.
(本小题满分12分)
为了研究某种细菌在特定环境下,随时间变化繁殖情况,得如下实验数据:
天数t(天) |
3 |
4 |
5 |
6 |
7 |
繁殖个数y(千个) |
2.5 |
3 |
4 |
4.5 |
6 |
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,预测时,细菌繁殖个数.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:,
.
(本小题满分12分)设数列的前n项和为
,满足
,且
.
(Ⅰ)求的通项公式;
(Ⅱ)若成等差数列,求证:
成等差数列.