为研究气候的变化趋势,某市气象部门统计了共100个星期中每个星期气温的最高温度和最低温度,如下表:
(1)若第六、七、八组的频数、
、
为递减的等差数列,且第一组与第八组的频数相同,求出
、
、
、
的值;
(2)若从第一组和第八组的所有星期中随机抽取两个星期,分别记它们的平均温度为,
,求事件“
”的概率.
某单位为了提髙员工身体素质,特于近期举办了一场跳绳比赛
,其中
男员工12人,女员工18人,其成绩编成如右所示的茎叶图(单位:分).若分数在175分以上(含175分)者定为“运动健将”,并给
以特别奖励,其它人员则给予“运动积极分子”称号,同时又特别提议给女“运动健将”休假一天的待遇.
(1)若用分层抽样的方法从“运动健将”和“运动积极分子”中提取10人,然后再从这10人中选4人,那么至少有1人是“运动健将”的概率是多少?
(2)若从所有“运动健将”中选3名代表,用表示所选代表中女“运动健将”的人数,试写出
的分布列,并
求
的数学期望.
已知函数,的部分图象如图所示.
(1) 求函数的解析式;
(2) 如何由函数的图象通过适当的平移与伸缩变换得到函数
的图象,写出变换过程.
已知奇函数是定义域为
的减函数
(Ⅰ)求的值;
(Ⅱ)若对任意的,不等式
恒成立,求
的取值范围;
已知三角形的顶点坐标为
,
,
,
是
边上的中点。
(Ⅰ)求边所在直线的方程;
(Ⅱ)求中线的长;
(Ⅲ)求边的高所在直线的方程。
如图,已知在侧棱垂直于底面三棱柱ABC—A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点.
(Ⅰ)求证:AC⊥BC1;
(Ⅱ)求证:AC1∥平面CDB1.