为研究气候的变化趋势,某市气象部门统计了共100个星期中每个星期气温的最高温度和最低温度,如下表:
(1)若第六、七、八组的频数、
、
为递减的等差数列,且第一组与第八组的频数相同,求出
、
、
、
的值;
(2)若从第一组和第八组的所有星期中随机抽取两个星期,分别记它们的平均温度为,
,求事件“
”的概率.
在中,角A,B,C的对边分别为
,且满足
,
.
(Ⅰ)求角;(Ⅱ)求
的面积;(Ⅲ)若
,求边
与
的值.
已知为各项均为正数的等比数列
的前n项和,且
,
(I)求数列的通项公式;(II)若
,求n的最小值。
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若存在,使不等式
成立,求实数
的取值范围;
(Ⅲ)若关于的方程
在区间
上恰好有两个不相等的实根,求实数
的取值范围.
已知定义域为的函数
是奇函数.
(Ⅰ)求的值;
(Ⅱ)判断的单调性,并证明你的结论;
(Ⅲ)若对任意的,不等式
恒成立,求
的取值范围.
某商场销售某件商品的经验表明,该商品每日的销量(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数。已知销售价格为5元/千克时,每日可售出该商品11千克。
(Ⅰ)求实数的值;
(Ⅱ)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大。