(本小题满分13分)已知椭圆的两焦点
和短轴的两端点
正好是一正方形的四个顶点,且焦点到椭圆上一点的最近距离为
.
(1)求椭圆的标准方程;
(2)设P是椭圆上任一点,AB 是圆C:的任一条直径,求
的
最大值.
某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点所到的时间比其他两个观测点晚期4s.已知各观测点到该中心的距离都是1020m.试确定该巨响发生的位置.(假定当时声音传播的速度为340m/s,相关各点均在同一平面上).
已知是双曲线
的左、右两焦点,过
作垂直于
轴的直线交双曲线于点
,若
时,求双曲线的渐近线方程.
已知动点与双曲线
的两个焦点
的距离之和为定值,且
的最小值为
,求动点
的轨迹方程.
椭圆的中心是原点O,它的短轴长为,相应于焦点F(c,0)(
)的准线
与x轴相交于点A,|OF|=2|FA|,过点A的直线与椭圆相交于P、Q两点 .
(1)求椭圆的方程及离心率;
(2)若,求直线PQ的方程;
(3)设(
),过点P且平行于准线
的直线与椭圆相交于另一点M,证明
.
一条变动的直线L与椭圆+
=1交于P、Q两点,M是L上的动点,满足关系|MP|·|MQ|=2.若直线L在变动过程中始终保持其斜率等于1.求动点M的轨迹方程,并说明曲线的形状.