有一台发出细光束的激光器装在小转台M上,转台以恒定的角速度转动,使激光束在竖直平面内扫描,小转台M位于液体池的底部,池的深度为 3m,宽度足够大,如图所示。在小转台M的正上方,有固定在竖直平面内的圆弧形显示屏,圆心位于小转台M处,圆弧的圆心角为120°,半径为R=10m,C点是圆弧AB的中点,C与 M的连线位于竖直线上。池中没有液体时,激光束从A扫描到B所需的最短时间t1="2s" ,当池中装满某种液体时,激光束从A扫描到B所需的最短时间t2=1s,求液体的折射率。
已知一带正电小球,质量,带电量
,如图所示,从光滑的斜面A点静止释放,BC段为粗糙的水平面,其长
,动摩擦因数
。已知A点离BC平面高
,BC平面离地高
整个AC段都绝缘,不计连接处的碰撞能量损失和空气阻力,
。
试求:(1)小球落地点离D的距离及落地点的速度大小;
(2)如果BC换成绝缘光滑的平面,小球依然从A点静止释放,若 要 让小球的落地点不变,可在如图虚线右侧加一个竖直的匀强电场,其方向向哪?场强大小是多少?
如图所示,水平面上有两根相距0.5 m的足够长的平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R的定值电阻,导体棒长L=0.5m,其电阻为r,与导轨接触良好。整个装置处于方向竖直向上的匀强磁场中,磁感应强度B="0.4" T。现使
以
的速度向右做匀速运动。求:
(1)中的感应电动势多大?
(2)中电流的方向如何?
(3)若定值电阻R=3.0Ω,导体棒的电阻r=1.0Ω,则电路中的电流多大?
一电阻为R的金属圆环,放在匀强磁场中,磁场与圆环所在平面垂直,如图(a)所示,已知通过圆环的磁通量随时间t的变化关系如图(b)所示,图中的最大磁通量和变化周期T都是已知量,求:
(1)在t=0到t= T/4的时间内,通过金属圆环横截面的电荷量q
(2)在t=0到t=2T的时间内,金属环所产生的电热Q.
如图所示,A、B是系在绝缘细线两端,带有等量同种电荷的小球(可视为质点),同种电荷间的排斥力沿两球心连线向相反方向,其中mA=0.3kg,现将绝缘细线通过O点的光滑定滑轮,将两球悬挂起来,两球平衡时,OA的线长等于OB的线长,A球紧靠在光滑绝缘竖直墙上,B球悬线OB偏离竖直方向600角,g=10 m/s2,求:
(1)B球的质量;(2)细绳中的拉力大小
如图甲所示,足够长的光滑U形导轨处在垂直于导轨平面向上的匀强磁场中,其宽度L =1m,所在平面与水平面的夹角为=53o,上端连接一个阻值为R=0.40 Ω的电阻.今有一质量为m=0.05 kg、有效电阻为r=0.30 Ω的金属杆ab沿框架由静止下滑,并与两导轨始终保持垂直且良好接触,其沿着导轨的下滑距离x与时间t的关系如图乙所示,图象中的OA段为曲线,AB段为直线,导轨电阻不计,g=10 m/s2
(忽略ab棒运动过程中对原磁场的影响),试求:
(1)磁感应强度B的大小;
(2)金属杆ab在开始运动的1.5 s内,,通过电阻R的电荷量;
(3)金属棒ab在开始运动的1.5 s内,电阻R上产生的热量。