游客
题文

(满分12分)设f (x) 是定义在 [-1,1] 上的偶函数,f (x) 与g(x) 的图象关于x =" 1" 对称,且当x Î [2,3] 时,g(x) = a (x-2)-2 (x-2) 3a 为常数).
(Ⅰ)求f (x) 的解析式;
(Ⅱ)若f (x) 在 [0,1] 上是增函数,求实数a 的取值范围;
(Ⅲ)若a Î (-6,6),问能否使f (x) 的最大值为 4?请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 三面角、直三面角的基本性质
登录免费查看答案和解析
相关试题

(3)(本小题满分7分)选修4—5:不等式选讲
已知函数不等式上恒成立.
(Ⅰ)求实数t的取值范围;
(Ⅱ)记t的最大值为T,若正实数a、b、c满足的最大值.

(2)(本小题满分7分)选修4—4:坐标系与参数方程
在直角坐标系中,曲线C的参数方程为为参数),曲线P在以该直角坐标系的原点O的为极点,x轴的正半轴为极轴的极坐标系下的方程为.
(Ⅰ)求曲线C的普通方程和曲线P的直角坐标方程;
(Ⅱ)设曲线C和曲线P的交点为A、B,求|AB|.

(1)(本小题满分7分)选修4—2:矩阵与变换
已知二阶矩阵有特征值及对应的一个特征向量.
(Ⅰ)求距阵M;
(Ⅱ)设曲线C在矩阵M的作用下得到的方程为,求曲线C的方程.

(本小题满分14分)
已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)求时,证明:对于任意的,恒有
(Ⅲ)设是函数的零点,实数满足,试探究实数的大小关系.

(本小题满分13分)
已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等腰直角三角形,AC⊥AD,且AD=DE=2AB,F为CD中点.
(Ⅰ)求证:平面BCE⊥平面CDE;
(Ⅱ)求直线BF和平面BCE所成角的正弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号