(本小题满分13分)
某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从2种服装商品,2种家电商品,3种日用商品中,选出3种商品进行促销活动.
(1)试求选出的3种商品中至少有一种是日用商品的概率;
(2)商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买该商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得数额为的奖金.假设顾客每次抽奖时获奖与否的概率都是
,请问:商场应将每次中奖奖金数额
最高定为多少元,才能使促销方案对商场有利?
在中,角
、
、
的对边分别为
、
、
,且
.
(Ⅰ)求角的大小;
(Ⅱ)求的取值范围.
由某种设备的使用年限(年)与所支出的维修费
(万元)的数据资料,算得
,
,
,
.
(Ⅰ)求所支出的维修费对使用年限
的线性回归方程
;
(Ⅱ)判断变量与
之间是正相关还是负相关;
(Ⅲ)估计使用年限为8年时,支出的维修费约是多少.
附:在线性回归方程中,
,
,其中
,
为
样本平均值,线性回归方程也可写为.
已知等差数列满足:
.
(Ⅰ)求的通项公式及前
项和
;
(Ⅱ)若等比数列的前
项和为
,且
,求
.
已知函数.
(Ⅰ)若函数在
上为增函数,求实数
的取值范围;
(Ⅱ)当且
时,证明:
.
已知椭圆:
的左、右焦点分别为
、
,椭圆上的点
满足
,且△
的面积为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左、右顶点分别为
、
,过点
的动直线
与椭圆
相交于
、
两点,直线
与直线
的交点为
,证明:点
总在直线
上.