游客
题文

(本小题满分13分)
已知函数的图象按向量平移得到函数
的图象.
(1)求实数ab的值;
(2)设函数,求函数的单调递增区间和最值.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

如图所示,抛物线C1:x2=4y,C2:x2=-2py(p>0).点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O).当x0=1-时,切线MA的斜率为-.

(1)求p的值;
(2)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).

已知抛物线C的顶点为O(0,0),焦点为F(0,1).

(1)求抛物线C的方程;
(2)过点F作直线交抛物线C于A,B两点,若直线AO,BO分别交直线l:y=x-2于M,N两点,求|MN|的最小值.

如图所示是抛物线形拱桥,当水面在l时,拱顶离水面2m,水面宽4m.水位下降1m后,水面宽    m.

如图所示,三棱柱ABCA1B1C1中,AA1⊥平面ABC,D、E分别为A1B1、AA1的中点,点F在棱AB上,且AF=AB.

(1)求证:EF∥平面BC1D;
(2)在棱AC上是否存在一个点G,使得平面EFG将三棱柱分割成的两部分体积之比为1∶15,若存在,指出点G的位置;若不存在,说明理由.

如图所示,矩形ABCD中,AB=a,AD=b,过点D作DE⊥AC于E,交直线AB于F.现将△ACD沿对角线AC折起到△PAC的位置,使二面角PACB的大小为60°.过P作PH⊥EF于H.

(1)求证:PH⊥平面ABC;
(2)若a+b=2,求四面体PABC体积的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号