(本小题满分13分)如图,由不大于n(n∈)的正有理数排成的数表,质点按
……顺序跳动,
所经过的有理数依次排列构成数列。
(Ⅰ)质点从出发,通过抛掷骰子来决定质点的跳动步数,骰子的点数为奇数时,质点往前跳一步(从
到达
);骰子的点数为偶数时,质点往前跳二步(从
到达
).
①抛掷骰子二次,质点到达的有理数记为ξ,求Eξ;②求质点恰好到达的概率。
(Ⅱ)试给出的值(不必写出求解过程)。
某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含个小正方形.
(Ⅰ)求出;
(Ⅱ)利用合情推理的“归纳推理思想”归纳出与
的关系式,
(Ⅲ)根据你得到的关系式求的表达式.
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100棵种子中的发芽数,得到如下资料:
日期 |
12月 1日 |
12月 2日 |
12月 3日 |
12月 4日 |
12月 5日 |
温差x(℃) |
10 |
11 |
13 |
12 |
8 |
发芽y(颗) |
23 |
25 |
30 |
26 |
16 |
该农科所确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,
剩下的2组数据用于回归方程检验.
(1)若选取的是12月1日与12月5日的2组数据,
请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
(3)请预测温差为14℃的发芽数。
(1)把下列的极坐标方程化为直角坐标方程(并说明对应的曲线):
①②
(2)把下列的参数方程化为普通方程(并说明对应的曲线):
③④
已知复数z=(2+i)m2--2(1-i).当实数m取什么值时,复数z是:
(1)虚数;(2)纯虚数;(3)复平面内第二、四象限角平分线上的点对应的复数?
已知函数,在点
处的切线方程是
(e为自然对数的底)。
(1)求实数的值及
的解析式;
(2)若是正数,设
,求
的最小值;
(3)若关于x的不等式对一切
恒成立,求实数
的取值范围。