某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100棵种子中的发芽数,得到如下资料:
日期 |
12月 1日 |
12月 2日 |
12月 3日 |
12月 4日 |
12月 5日 |
温差x(℃) |
10 |
11 |
13 |
12 |
8 |
发芽y(颗) |
23 |
25 |
30 |
26 |
16 |
该农科所确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,
剩下的2组数据用于回归方程检验.
(1)若选取的是12月1日与12月5日的2组数据,
请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
(3)请预测温差为14℃的发芽数。
已知一个圆的圆心为坐标原点,半径为
.从这个圆上任意一点
向
轴作垂线
,
为垂足.
(Ⅰ)求线段中点
的轨迹方程;
(Ⅱ)已知直线与
的轨迹相交于
两点,求
的面积
已知定点F(2,0)和定直线,动圆P过定点F与定直线相切,记动圆圆心P的轨迹为曲线C
(1)求曲线C的方程.
(2)若以M(2,3)为圆心的圆与抛物线交于A、B不同两点,且线段AB是此圆的直径时,求直线AB的方程
如图,已知三棱锥的侧棱
两两垂直,且
,
,
是
的中点。
(1)求异面直线与
所成角的余弦值;
(2)求直线和平面
的所成角的正弦值。
(3)求点E到面ABC的距离。
设:方程
有两个不等的负根,
:方程
无实根,若p或q为真,p且q为假,求
的取值范围.
已知定义域为的函数
是奇函数.
(Ⅰ)求值;
(Ⅱ)判断并证明该函数在定义域R上的单调性;
(Ⅲ)设关于的函数
有零点,求实数
的取值范围.