游客
题文

已知一个圆的圆心为坐标原点,半径为.从这个圆上任意一点轴作垂线为垂足.
(Ⅰ)求线段中点的轨迹方程;
(Ⅱ)已知直线的轨迹相交于两点,求的面积

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

已知,试用表示的值.

已知复数均为实数,为虚数单位,且对于任意复数
(1)试求的值,并分别写出表示的关系式;
(2)将()作为点的坐标,()作为点的坐标,上述关系可以看作是坐标平面上点的一个变换:它将平面上的点变到这一平面上的点
当点在直线上移动时,试求点经该变换后得到的点的轨迹方程;
(3)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由。

请先阅读:
在等式 cos 2 x = 2 cos 2 x - 1 ( x R ) 的两边求导,得: ( cos 2 x ) ` = ( 2 cos 2 x - 1 ) ` ,由求导法则,得 ( - sin 2 x ) 2 ` = 4 cos x ( - sin x ) ,化简得等式: sin 2 x = 2 cos x sin x .
(1)利用上题的想法(或其他方法),结合等式 ( 1 + x ) n = C 0 n + C n 1 x + C n 2 x 2 + . . . + C n n x n  ( x R ,正整数 n 2 ),证明: n [ ( 1 + x ) n - 1 - 1 ] = k = 2 n k C n k x k - 1 (2)对于正整数 n 3 ,求证:
(i) k = 1 n ( - 1 ) k k C n k = 0    (ii) k = 1 n ( - 1 ) k k 2 C n k = 0 ; (iii) k = 1 n 1 k + 1 C n k = 2 n - 1 - 1 n + 1

记动点P是棱长为 1 的正方体 A B C D - A 1 B 1 C 1 D 1 的对角线 B D 1 上一点,记 D 1 P D 1 B = λ 。当 A P C 为钝角时,求 λ 的取值范围.

image.png

A.选修4-1 几何证明选讲

如图,设 A B C 的外接圆的切线 A E B C 的延长线交于点 E B A C 的平分线与 B C 交于点 D .求证: E D 2 = E B · E C .

image.png

B.选修4-2 矩阵与变换

在平面直角坐标系 x O y 中,设椭圆 4 x 2 + y 2 = 1 在矩阵对应的变换作用下得到曲线 F ,求 F 的方程.

C.选修4-4 参数方程与极坐标

在平面直角坐标系 x O y 中,点 P ( x , y ) 是椭圆 x 2 3 + y 2 = 1 上的一个动点,求 S = x + y 的最大值.

D.选修4-5 不等式证明选讲

a , b , c 为正实数,求证: 1 a 3 + 1 b 3 + 1 c 3 + a b c 2 3 .

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号