(本小题满分14分)已知是函数
的一个极值点。
(Ⅰ)求;
(Ⅱ)若直线与函数
的图象有3个交点,求
的取值范围;
(Ⅲ)设=(
)
+
+(6-
+2(
),
,若
=0有两个零点
,且
,试探究
值的符号
(本小题满分13分)如图所示的“8”字形曲线是由两个关于轴对称的半圆和一个双曲线的一部分组成的图形,其中上半个圆所在圆方程是
,双曲线的左、右顶点
、
是该圆与
轴的交点,双曲线与半圆相交于与
轴平行的直径的两端点.
(1)试求双曲线的标准方程;
(2)记双曲线的左、右焦点为、
,试在“8”字形曲线上求点
,使得
是直角.
(本小题满分13分)设函数
(Ⅰ)求的最小正周期及值域;
(Ⅱ)已知中,角
的对边分别为
,若
,
,
,求
的面积.
(本小题满分12分)如图,四棱锥中,
是正三角形,四边形
是矩形,且平面
平面
,
,
.
(Ⅰ)若点是
的中点,求证:
平面
;
(Ⅱ)若点在线段
上,且
,当三棱锥
的体积为
时,求实数
的值.
(本小题满分12分)
某网站针对“2015年春节放假安排”开展网上问卷调查,提出了A,B两种放假方案,调查结果如下表(单位:万人):
人群 |
青少年 |
中年人 |
老年人 |
支持A方案 |
200 |
400 |
800 |
支持B方案 |
100 |
100 |
![]() |
已知从所有参与调查的人中任选1人是“老年人”的概率为.
(Ⅰ)求的值;
(Ⅱ)从参与调查的“老年人”中,用分层抽样的方法抽取6人,在这6人中任意选取2人,求恰好有1人“支持B方案”的概率.
(本小题满分12分)已知数列满足
=5,且其前
项和
.
(Ⅰ)求的值和数列
的通项公式;
(Ⅱ)设为等比数列,公比为
,且其前
项和
满足
,求
的取值范围.