已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为3. (Ⅰ)求椭圆的标准方程; (Ⅱ)已知圆,直线.试证明:当点在椭圆上运动时,直线与圆恒相交,并求直线被圆所截得弦长的取值范围. (Ⅲ)设直线与椭圆交于两点,若直线交轴于点,且,当变化时,求 的值;
关于的方程的两根分别在区间与内,求的取值范围.
解关于的不等式.
已知正项数列的前n项和为,且 (1)求、; (2)求证:数列是等差数列; (3)令,问数列的前多少项的和最小?最小值是多少?
在锐角△ABC中,内角A,B,C的对边分别为且. (1)求角A的大小; (2) 若求△ABC的面积.
已知点(0,),椭圆:的离心率为,是椭圆的焦点,直线的斜率为,为坐标原点. (Ⅰ)求的方程; (Ⅱ)设过点的直线与相交于两点,当的面积最大时,求的方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号