已知点(0,
),椭圆
:
的离心率为
,
是椭圆的焦点,直线
的斜率为
,
为坐标原点.
(Ⅰ) 求的方程;
(Ⅱ)设过点的直线
与
相交于
两点,当
的面积最大时,求
的方程.
如图是某几何体的三视图,它的正视图和侧视图均为矩形,俯视图为正三角形(长度单位:cm)
(1)试说出该几何体是什么几何体;
(2)按实际尺寸画出该几何体的直观图,并求它的表面积及体积.(只要做出图形,不要求写作法)
(1) 求不等式的解集:
(2)已知三角形的三个顶点是
求
边上的高所在直线的方程;
已知函数.
(1当时,
与
)在定义域上单调性相反,求的
的最小值。
(2)当时,求证:存在
,使
的三个不同的实数解
,且对任意
且
都有
.
数列满足:
,
(
≥3),记
(≥3).
(1)求证数列为等差数列,并求通项公式;
(2)设,数列{
}的前n项和为
,求证:
<
<
.
给定椭圆,称圆心在坐标原点O,半径为
的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是
.
(1)若椭圆C上一动点满足
,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为
,求P点的坐标;
(3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点
的直线的最短距离
.若存在,求出a,b的值;若不存在,请说明理由.