已知函数.
(1当 时,
与
)在定义域上单调性相反,求的
的最小值。
(2)当时,求证:存在
,使
的三个不同的实数解
,且对任意
且
都有
.
(已知矩阵,记绕原点逆时针旋转
的变换所对应的矩阵为
(1)求矩阵;
(2)若曲线:
在矩阵
对应变换作用下得到曲线
,求曲线
的方程.
已知函数
(1)当时,求函数
的极小值;
(2)当时,过坐标原点
作曲线
的切线,设切点为
,求实数
的值;
(3)设定义在上的函数
在点
处的切线方程为
当
时,若
在
内恒成立,则称
为函数
的“转点”.当
时,试问函数
是否存在“转点”.若存在,请求出“转点”的横坐标,若不存在,请说明理由.
已知椭圆:
的左焦点为
,且过点
.
(1)求椭圆的方程;
(2)设过点P(-2,0)的直线与椭圆E交于A、B两点,且满足.
①若,求
的值;
②若M、N分别为椭圆E的左、右顶点,证明:
如图,是边长为
的正方形,
平面
,
,
,
与平面
所成角为
.
(1)求证:平面
;
(2)求二面角的余弦值;
(3)设点是线段
上一个动点,试确定点
的位置,使得
平面
,并证明你的结论.
已知数列为等差数列,且
(1)求数列的通项公式;
(2)证明: