(本小题满分12分) 已知数列中,,且点在直线上. (Ⅰ)求数列的通项公式;(Ⅱ)若函数,求函数的最小值; (Ⅲ)设表示数列的前项和.试问:是否存在关于的整式,使得对于一切不小于2的自然数恒成立?若存在,写出的解析式,并加以证明;若不存在,试说明理由.
(本小题满分12分)设全集为,,. 求(1);(2)
已知函数,若对R恒成立,求实数的取值范围.
关于的方程-=0在开区间上. (1)若方程有解,求实数的取值范围. (2)若方程有两个不等实数根,求实数的取值范围.
已知向量,函数 (1)求函数的单调递减区间. (2)将函数的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象.求在上的值域.
已知向量= ,=(1,2) (1)若∥ ,求tan的值。 (2)若||=,,求的值
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号