(本小题满分12分)
上海世博会于2010年5月1日正式开幕,按规定个人参观各场馆需预约,即进入园区后持门票当天预约,且一张门票每天最多预约六个场馆。考虑到实际情况(排队等待时间等),张华决定参观甲、乙、丙、丁四个场馆。假设甲、乙、丙、丁四个场馆预约成功的概率分别是且它们相互独立互不影响。
(1)求张华能成功预约甲、乙、丙、丁中两个场馆的概率;
(2)用表示能成功预约场馆的个数,求随机变量
的分布列和数学期望。
(本小题10分)已知:方程
有两个不相等的负实根;
:方程
无实根,如果
或
为真,
且
为假,求
的取值范围。
(本小题满分12分)已知函数,
.
(Ⅰ)若,求函数
的极值;
(Ⅱ)设函数,求函数
的单调区间;
(Ⅲ)若在区间上不存在
,使得
成立,求实数
的取值范围.
在平面直角坐标系xOy中,已知两点和
,动点M满足
,设点M的轨迹为C,半抛物线
:
(
),设点
.
(Ⅰ)求C的轨迹方程;
(Ⅱ)设点T是曲线上一点,曲线
在点T处的切线与曲线C相交于点A和点B,求△ABD的面积的最大值及点T的坐标.
一块长为、宽为
的长方形铁片,铁片的四角截去四个边长均为
的小正方形,然后做成一个无盖方盒.
(Ⅰ)试把方盒的容积V表示为的函数;
(Ⅱ)试求方盒容积V的最大值.
如图,直三棱柱中,
,
,D是棱
上的动点.
(Ⅰ)证明:;
(Ⅱ)若平面BDC1分该棱柱为体积相等的两个部分,试确定点D的位置,并求二面角的大小.