(本小题满分12分)
某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.
(Ⅰ)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从盒中抽取两张都是“世博会会徽”卡的概率是,求抽奖者获奖的概率;
(Ⅱ)现有甲乙丙丁四人依次抽奖,用表示获奖的人数,求
的分布列及
,
的值.
如图,是圆
的直径,直线
与圆
相切于
,
垂直
于
,
垂直
于
,
垂直
于
,
垂直
于
,连接
,证明:
(Ⅰ);
(Ⅱ).
已知函数.
(Ⅰ)当时,求函数
的点
处的切线方程;
(Ⅱ)设,若函数
在定义域内存在两个零点,求实数
的取值范围.
已知椭圆的两个焦点分别为
,过点
的直线与椭圆相交于
两点,且
.
(Ⅰ)求椭圆的离心率;
(Ⅱ)求直线的斜率.
如图,已知四棱锥,底面
为菱形,
平面
,
,
分别是
的中点.
(Ⅰ)证明:;
(Ⅱ)若,求二面角
的余弦值.
甲、乙两人共同抛掷一枚硬币,规定硬币正面朝上甲得1分,否则乙得1分,先积得3分者获胜,并结束游戏.
(Ⅰ)求在前3次抛掷中甲得2分,乙得1分的概率;
(Ⅱ)若甲已经积得2分,乙已经积得1分,求甲最终获胜的概率;
(Ⅲ)用表示决出胜负抛硬币的次数,求
的分布列及数学期望.