(本小题满分12分)
某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.
(Ⅰ)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从盒中抽取两张都是“世博会会徽”卡的概率是,求抽奖者获奖的概率;
(Ⅱ)现有甲乙丙丁四人依次抽奖,用表示获奖的人数,求
的分布列及
,
的值.
(本小题满分10分)选修4-4:坐标系与参数方程
已知直线的参数方程为
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(Ⅰ)求圆的直角坐标方程;
(Ⅱ)设,直线
与圆
相交于点
,求
.
(本小题满分10分)选修4-1 :几何证明选讲
如图所示,已知PA与⊙O相切,A为切点,过点P的割线交圆于B、C两点,弦CD∥AP,AD、BC相交于点E,F为CE上一点,且DE2 = EF·EC.
(Ⅰ)求证:CE·EB = EF·EP;
(Ⅱ)若CE:BE = 3:2,DE = 3,EF = 2,求PA的长.
(本小题满分12分)已知函数,其中
为自然对数的底数.
(Ⅰ)求曲线在点
处的切线方程;
(Ⅱ)若对任意,不等式
恒成立,求实数
的取值范围;
(Ⅲ)试探究当时,方程
解的个数,并说明理由.
(本小题满分12分)已知椭圆的一个顶点坐标为B(0,1),且点
在
上.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与椭圆
交于M,N且
,求证:
为定值.
(本小题满分12分)已知四棱锥中,底面
是直角梯形, 平面
平面
R、S分别是棱AB、PC的中点,
(Ⅰ)求证:平面平面
(Ⅱ)求证:平面
(Ⅲ)若点在线段
上,且
平面
求三棱锥
的体积.