(本小题满分12分)
某单位组织职工参加了旨在调查职工健康状况的测试.该测试包括心理健康测试和身体健康两个项目,每个项目的测试结果为A、B、C、D、E五个等级.假设该单位50位职工全部参加了测试,测试结果如下:x表示心理健康测试结果,y表示身体健康测试结果.
![]() 人数 x |
身体健康 |
|||||
A |
B |
C |
D |
E |
||
心理健康 |
A |
1 |
3 |
1 |
0 |
1 |
B |
1 |
0 |
7 |
5 |
1 |
|
C |
2 |
1 |
0 |
9 |
3 |
|
![]() |
1 |
b |
6 |
0 |
a |
|
E |
0 |
0 |
1 |
1 |
3 |
(I)求a+b的值;
(II)如果在该单位随机找一位职工谈话,求找到的职工在这次测试中心理健康为D等且身体健康为C等的概率;
(III)若“职工的心理健康为D等”与“职工的身体健康为B等”是相互独立事件,求a、b的值.
已知直线在矩阵
对应的变换作用下变为直线
.
(1)求实数,
的值;
(2)若点在直线
上,且
,求点
的坐标.
若数列满足
且
(其中
为常数),
是数列
的前
项和,数列
满足
.
(1)求的值;
(2)试判断是否为等差数列,并说明理由;
(3)求(用
表示).
已知函数,
为常数.
(1)若函数在
处的切线与
轴平行,求
的值;
(2)当时,试比较
与
的大小;
(3)若函数有两个零点
、
,试证明
.
已知椭圆的右准线
,离心率
,
,
是椭圆上的两动点,动点
满足
,(其中
为常数).
(1)求椭圆标准方程;
(2)当且直线
与
斜率均存在时,求
的最小值;
(3)若是线段
的中点,且
,问是否存在常数
和平面内两定点
,
,使得动点
满足
,若存在,求出
的值和定点
,
;若不存在,请说明理由.
图1是某斜拉式大桥图片,为了了解桥的一些结构情况,学校数学兴趣小组将大桥的结构进行了简化,取其部分可抽象成图2所示的模型,其中桥塔、
与桥面
垂直,通过测量得知
,
,当
为
中点时,
.
(1)求的长;
(2)试问在线段
的何处时,
达到最大.
|