已知圆上的动点,点Q在NP上,点G在MP上,且满足
.
(I)求点G的轨迹C的方程;
(II)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设 是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.
定义在上的函数
同时满足以下条件:
①在(0,1)上是减函数,在(1,+∞)上是增函数;
②是偶函数;
③在x=0处的切线与直线
y=x+2垂直.
(1)求函数=
的解析式;
(2)设g(x)=,若存在实数x∈[1,e],使
<
,求实数m的取值范围.
设的内角
所对的边长分别为
,且
.
(1)求的值;
(2)求的最大值.
在数列中,
,
.
(1)设,求数列
的通项公式;
(2)求数列的前
项和
.
四棱锥P-ABCD中,侧面PAD⊥底面ABCD,底面ABCD是边长为2的正方形,又PA=PD,∠APD=60°,E、G分别是BC、PE的中点.
(1)求证:AD⊥PE;
(2)求二面角E-AD-G的正切值.
求函数的最大值与最小值.