(本小题满分10分)选修4-4:坐标系与参数方程
已知曲线的极坐标方程为
,曲线
的参数方程为
(
为参
数).
(Ⅰ) 将曲线的极
坐标方程化为直角坐标方程;
(Ⅱ) 曲线
和曲线
交于
、
两点,求
长.
已知集合是正整数
的一个排列
,函数
对于
,定义:
,
,称
为
的满意指数.排列
为排列
的生成列.
(Ⅰ)当时,写出排列
的生成列;
(Ⅱ)证明:若和
为
中两个不同排列,则它们的生成列也不同;
(Ⅲ)对于中的排列
,进行如下操作:将排列
从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:新的排列的各项满意指数之和比原排列的各项满意指数之和至少增加
.
如图,椭圆的左顶点为
,
是椭圆
上异于点
的任意一点,点
与点
关于点
对称.
(Ⅰ)若点的坐标为
,求
的值;
(Ⅱ)若椭圆上存在点
,使得
,求
的取值范围.
如图1,在四棱锥中,
底面
,面
为正方形,
为侧棱
上一点,
为
上一点.该四棱锥的正(主)视图和侧(左)视图如图2所示.
(Ⅰ)求四面体的体积;
(Ⅱ)证明:∥平面
;
(Ⅲ)证明:平面平面
.
如图,在直角坐标系中,角
的顶点是原点,始边与
轴正半轴重合,终边交单位圆于点
,且
.将角
的终边按逆时针方向旋转
,交单位圆于点
.记
.
(Ⅰ)若,求
;
(Ⅱ)分别过作
轴的垂线,垂足依次为
.记△
的面积为
,△
的面积为
.若
,求角
的值.
已知等比数列的各项均为正数,
,
.
(Ⅰ)求数列的通项公式;
(Ⅱ)设.证明:
为等差数列,并求
的前
项和
.