某工厂师徒二人各加工相同型号的零件2个,是否加工出精品均互不影响.已知师父加工一个零件是精品的概率为,师徒二人各加工2个零件都是精品的概率为
(I)求徒弟加工2个零件都是精品的概率;
(II)求徒弟加工该零件的精品数多于师父的概率;
(III)设师徒二人加工出的4个零件中精品个数为,求
的分布列与均值E
△ABC中,BC=7,AB=3,且=
.
(1)求AC的长; (2)求∠A的大小.
已知函数
(1)求在点
处的切线方程;
(2)若存在,使
成立,求
的取值范围;
(3)当时,
恒成立,求
的取值范围.
已知数列的前
项和
和通项
满足
数列
中,
(1)求数列,
的通项公式;
(2)数列满足
是否存在正整数
,使得
时
恒成立?若存在,求
的最小值;若不存在,试说明理由.
如图,为圆
的直径,点
、
在圆
上,
,矩形
所在的平面和圆
所在的平面互相垂直,且
,
.
(1)设的中点为
,求证:
平面
;
(2)设平面将几何体
分成的两个锥体的体积分别为
,
,求
.
已知等差数列的前
项和为
,
(1)求数列的通项公式
与前
项和
;
(2)设求证:数列
中任意不同的三项都不可能成为等比数列.