某校从参加高一年级期中考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段
,
…
后得到如下部分频率分布直方图.(见下一页图)观察图形的信息,回答下列问题:
(Ⅰ)求分数在内的频率,并补全这个频率分布直方图;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(Ⅲ)用分层抽样的方法在分数段为的学生中抽取一个容量为
的样本,将该样本看成一个总体,从中任取
人,求至多有
人在分数段
的概率。
(本小题12分)已知等差数列的前六项的和为60,且
.
(1)求数列的通项公式
及前
项和
;
(2)若数列满足
,
,求数列
的前n项和
.
(本小题10分) 已知函数.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足,求f(B)的取值范围.
(本小题满分12分)已知函数其中
为常数,函数
和
的图象在它们与坐标轴交点的切线互相平行.
(1)求函数的单调区间;
(2)若不等式在区间
上恒成立,求实数
的取值范围.
(本小题满分12分)已知,动点
满足
,设
的轨迹为曲线
.
(1)求曲线的方程;
(2)过的直线
与曲线
交于
、
两点,过
与
平行的直线
与曲线
交于
、
两点,求四边形
的面积的最大值.
(本小题满分12分)如图,在三棱锥中,底面
为直角三角形,且
,
底面
,且
,点
是
的中点,
且交
于点
.
(1)求证:平面
;
(2)当时,求二面角
的余弦值.