正方体棱长为1,以
为坐标原点,以直线
为横轴,直线
为纵轴,直线
为竖轴建立空间直角坐标系,如图.
为
的重心,
于
.(I)求点
的坐标.(II)求直线
与平面
所成的角的大小.
(每小题5分,满分10分)
(1)计算:
(2)已知用
表示
.
已知函数
(1)若在区间[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=-是
的极值点,求
在[1,a]上的最大值;
(3)在(2)的条件下,是否存在实数b,使得函数=bx的图象与函数
的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由.
(本小题满分12分)已知定义域为R的函数为奇函数,且满足
,当x∈[0,1]时,
.
(1)求在[-1,0)上的解析式;
(2)求.
(本小题满分12分)数列{an}的前n项和记为Sn,
(1)求{an}的通项公式;
(2)等差数列{bn}的各项为正,其前n项和为Tn,且,又
成等比数列,求Tn
(本小题满分12分)
已知向量,
,且
.
(1)求及
;
(2)求函数的最大值,并求使函数取得最大值时
的