已知函数
(1)若在区间[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=-是
的极值点,求
在[1,a]上的最大值;
(3)在(2)的条件下,是否存在实数b,使得函数=bx的图象与函数
的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由.
【2015高考上海,文19】如图,圆锥的顶点为,底面的一条直径为
,
为半圆弧
的中点,
为劣弧
的中点.已知
,
,求三棱锥
的体积,并求异面直线
与
所成角的大小.
【2015高考重庆,文20】如图,三棱锥P-ABC中,平面PAC平面ABC,
ABC=
,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF//BC.
(Ⅰ)证明:AB平面PFE.
(Ⅱ)若四棱锥P-DFBC的体积为7,求线段BC的长.
【2015高考浙江,文18】如图,在三棱锥中,
在底面ABC的射影为BC的中点,D为
的中点.
(1)证明:;
(2)求直线和平面
所成的角的正弦值.
【2015高考新课标1,文18】(本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,,
(Ⅰ)证明:平面平面
;
(Ⅱ)若,
三棱锥
的体积为
,求该三棱锥的侧面积.
【2015高考四川,文18】一个正方体的平面展开图及该正方体的直观图的示意图如图所示.
(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)
(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.
(Ⅲ)证明:直线DF平面BEG