品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出
瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这
瓶酒,并重新按品质优劣为它们排序,这称为一轮测试。根据一轮测试中的两次排序的偏离程度的高低为其评为。
现设
,分别以
表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令
,则
是对两次排序的偏离程度的一种描述。
(Ⅰ)写出
的可能值集合;
(Ⅱ)假设
等可能地为1,2,3,4的各种排列,求
的分布列;
(Ⅲ)某品酒师在相继进行的三轮测试中,都有
,
(i)试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);
(ii)你认为该品酒师的酒味鉴别功能如何?说明理由。
(本小题满分14分)已知函数的部分图像如图所示.
、
分别是图像上的一个最高点和最低点,
为图像与
轴的交点,且四边形
为矩形.
(Ⅰ)求的解析式;
(Ⅱ)将的图像向右平移
个单位长度后,得到函数
的图像.已知
,
,求
的值.
(本小题满分14分)已知函数.
(1)判断的单调性;
(2)求函数的零点的个数;
(3)令,若函数
在
内有极值,求实数a的取值范围.
(本小题满分14分)如图,在平面直角坐标系xOy中,椭圆的离心率为
,
过椭圆右焦点作两条互相垂直的弦AB与CD.当直线AB斜率为0时,
.
(1)求椭圆的方程;
(2)求由A,B,C,D四点构成的四边形的面积的取值范围.
(本小题满分13分)已知等比数列{an}的公比,前n项和为Sn,S3=7,且
,
,
成等差数列,数列{bn}的前n项和为Tn,,其中
N*.
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)设,
,
,求集合C中所有元素之和.
(本小题满分12分)正方体的棱长为l,点F、H分别为A1D、A1C的中点.
(1)证明:A1B∥平面AFC;
(2)证明:B1H平面AFC.