如图,已知椭圆
的离心率为
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线
、
的斜率分别为
、
,证明
;
(Ⅲ)是否存在常数
,使得
恒成立?若存在,求
的值;若不存在,请说明理由.
(本小题满分12分) 已知四棱锥底面ABCD是矩形,PA⊥平面ABCD, AD=2,AB=1,E.F分别是线段AB.BC的中点,
(1)证明:PF⊥FD;
(2)在PA上找一点G,使得EG∥平面PFD;.
(3)若与平面
所成的角为
,求二面角
的余弦值.
(本小题满分12分)
已知全集U = R,非空集合,
.
(1)当时,求(∁U
)
;
(2)命题,命题
,若
是
的必要条件,求实数
的取值范围
(满分14分)数列的前
项和为
,
,
.
(1)求。
(2)求数列的通项
;
(3)求数列的前
项和
(满分12分)
已知正方体ABCD—A1B1C1D1,其棱长为2,O是底ABCD对角线的交点。
求证:
(1)C1O∥面AB1D1;
(2)A1C⊥面AB1D1。
(3)若M是CC1的中点,求证:平面AB1D1⊥平面MB1D1
(满分12分)已知函数。
(1)解关于的不等式
。
(2)若在(0,+∞)上恒成立,求
的取值范围