如图,正方形 和四边形 所在的平面互相垂直,
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面BDE;
(Ⅲ)求二面角
的大小.
已知
(1)求函数在
上的最小值
(2)对一切的恒成立,求实数a的取值范围
(3)证明对一切,都有
成立
已知函数在
处取得极值2.
⑴ 求函数的解析式;
⑵ 若函数在区间
上是单调函数,求实数m的取值范围;
在本次数学期中考试试卷中共有10道选择题,每道选择题有4个选项,其中只有一个是正确的。评分标准规定:“每题只选一项,答对得5分,不答或答错得0分”.某考生每道题都给出一个答案,且已确定有7道题的答案是正确的,而其余题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜。试求出该考生:
(1)选择题得满分(50分)的概率;
(2)选择题所得分数的数学期望。
已知函数.
(1)试求的值域;
(2)设,若对
,
,恒
成立,试求实数
的取值范围
某中学研究性学习小组,为了考察高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了 50名学生.调査结果表明:在爱看课外书的25人中有18人作文水平好,另7人作文水平一般;在不爱看课外书的25人中有6人作文水平好,另19人作文水平一般.
(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文水平与爱看课外书有关系?
高中学生的作文水平与爱看课外书的2×2列联表
爱看课外书 |
不爱看课外书 |
总计 |
|
作文水平好 |
|||
作文水平一般 |
|||
总计 |
(Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为1、2、3、4、5,某5名爱看课外书且作文水平一般的学生也分别编号为1、2、3、4、5,从这两组学生中各任选1人进行学习交流,求被选取的两名学生的编号之和为3的倍数或4的倍数的概率.
参考公式:,其中
.
参考数据:
![]() |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |